Assessment of Spire Commercial RO Data

C. Marquardt1, A. von Engeln1, A. Nardo1, Y. Andres1, J. Innerkofler2, F. Ladstädt2, M. Schwärz2, G. Kirchengast2, V. Irisov3, V. Nguyen3, D. Masters3, J. Rosello4

1EUMETSAT, 2Wegener Center, Uni Graz, 3Spire Global Inc, 4ESA
Outline

- Study background
- Numbers (of occultations, constellations,...)
- Statistics (of bending angles)
- POD
- Conclusions
ESA Study

- “This project will establish a first independent quality baseline of the quality of commercial GNSS-RO data from an operational small satellite constellation […]. Spire Global will provide a minimum of 30,000 GNSS-RO profiles for Wegener Center and EUMETSAT to assess its quality […]”

- Funded by ESA via its “Express Procurement Procedure”.

- This presentation gives an overview of the statistical validation of bending angle data as provided by Spire, and some initial results on lower level processing (POD).
Study history

- 30,000 occultations (500/day) during December 2018 and January 2019

- Initial bending angle data provided by Spire was statistically optimised.
 - Spire re-delivered raw bending angle data.

- Spire further offered additional data to the study consortium due to improved receiver performance (June and July 2019 – another 54,000+ occultations) and did so recently.

- Spire provided a very good technical support, fixing several issues (e.g. data formats) and answering many technical question in details. Thank you!
Daily occultation numbers

- Number of daily occultations in Dec/Jan 2018/19 (left) and Jun/Jul 2019 (right).
- 4 GNSS constellations
- 18 different satellites, some different instrument/firmware versions; mostly sun-synchronous orbits around 500 km orbit height;
- Data is quality controlled (based on retrieval diagnostics, but not auxiliary/NWP data)

30,000 occultations

54,000 occultations
Global covariance statistics (Dec 2018/Jan 2019)

- Above 40 km: optimised data looks as good as GRAS, but raw bending angles are not;
- Note: Bias around 40 km is a known ECMWF issue.
- Core region: Excellent agreement (as expected) – but note discontinuity around 20 km (WO/GO transition in Spire retrievals?)
- Troposphere: similar to GRAS for both Bias and SDevs which surprised us – we think our current retrieval needs improvement.
Global covariance statistics (Jun/July 2019)

- High up: as before;
- Core region: again excellent agreement, same structure between 12 and 20 km;
- Troposphere improved; Bias lower than for GRAS, Sdevs also (slightly) improved.

- Note: colours changed…
- …and statistics is calculated against operational ECMWF short range forecasts and GRAS products.
Vertical correlation length

- Full Width at Half-Maximum (FWHM) of vertical correlation peaks (June/July 2019)

- Driven by vertical smoothing…

- …suggesting that Spire data is more smoothed/filtered than GRAS, likely explaining lower SDevs in Spire data below the tropopause.
Latitudinal distribution between constellations seems to be quite different – is that due to sampling effects?

Statistics from July 2019.
Distribution of occultations

- Due to different orbit geometries, different GNSS constellations exhibit different distributions of occultations.
- Data from July 2019.
Statistics by GNSS constellation

- GLONASS stands out; poorer performance in the troposphere is only partially due to sampling (note the scale of the bias axis). Will be addressed in the future.
- Statistics from July 2019.
Co-located Spire and GRAS occultations

- Colocations within 3 hrs / 300 km
- Excellent agreement in the core region (up to 40 km),
- Increased deviations above and below
- Increased standard deviation around tropopause probably due to different smoothing
- Known GRAS issues showing up in the troposphere
- SH high latitudes not fully understood
POD degradation due to lower (~hourly) duty cycle?

- Using GRAS/Metop-A data and POD, but introducing hourly data gaps
 - Orbit agreement ~5 cm (3d RMS), and 0.04 mm/s (3d RMS);
 - Satisfies EPS-SG requirements

- Hourly duty cycles won’t provide problems if zenith antenna data (and POD) is ok.
Melbourne-Wübbena combination – Spire FM046
Newer satellites behave better – Spire FM101

- More recent Spire receivers perform better.

- POD processing proved difficult initially as Spire zenith data exhibits several challenges:
 - Often only single frequency measurements only
 - Tracking failures, specially in early satellites
 - Tracking down to -20° elevation
 - Initial orbit agreement only ~ 40 cm 3d RMS

- For perspective:
 - EUMETSAT vs UCAR ~15-20 cm 3d RMS for COSMIC-I;
 - EUMETSAT vs DLR/CNES/Delft ~5 cm 3d RMS for Metops and Sentinel-3s
 - Early days of GRAS: ~30 cm 3d RMS
After some learning on both sides…

<table>
<thead>
<tr>
<th>Satellite</th>
<th>MEAN</th>
<th>STD</th>
<th>RMS</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radial position</td>
<td>4.09</td>
<td>13.57</td>
<td>14.18</td>
<td>36.57</td>
</tr>
<tr>
<td>Cross position</td>
<td>-10.77</td>
<td>7.21</td>
<td>12.96</td>
<td>30.55</td>
</tr>
<tr>
<td>Transverse position</td>
<td>2.59</td>
<td>13.07</td>
<td>13.33</td>
<td>39.15</td>
</tr>
<tr>
<td>Clock bias</td>
<td>nan</td>
<td>nan</td>
<td>nan</td>
<td>nan</td>
</tr>
<tr>
<td>3D position</td>
<td>22.26</td>
<td>7.15</td>
<td>23.38</td>
<td>47.44</td>
</tr>
</tbody>
</table>

- Along-track velocity differences for Spire FM086
- 3D-RMS in the order of 20-25 cm, 1d 10-15 cm, small bias left
- Satisfies GRAS POD velocity requirement.
Conclusions

General:
- Spire provided ~ 84,000 occultations to the study consortium.
- For the first time, data from four different constellations became available.
- The Spire instruments and processing are evolving quickly.

Data Quality:
- In the core region (upper troposphere to mid-stratosphere), Spire data is highly consistent with GRAS (and very likely other RO missions), though probably exhibits more vertical smoothing.
- Above 40 km, random errors exceed noise levels known from GRAS.
- In the troposphere, measurements penetrate close to the ground, with systematic and random uncertainties being in a similar order of magnitude as for operational GRAS data (which has weaknesses in its wave optics);
- Differences between RO products from different GNSS constellations, especially in the troposphere, need to be better understood (and might benefit other future missions as well)
Conclusions (cont’d)

POD:
- Lower duty cycles of Spire satellites are not problematic from a POD point of view
- POD solutions agree in the order of 20-25 cm (3d-RMS); along-track velocity ~ 0.1 mm/s (within Metop requirement)

Next steps for this project:
- Processing and analysis of lower level data has started at both Uni Graz and EUMETSAT
- Further evolution of POD and product comparison
- Spire provided excellent technical support to the study consortium.