Quantifying the Tropical Upper Troposphere Lapse Rate Feedback Using Radio Occultations

Panagiotis Vergados\(^1\)
Chi O. Ao\(^1\) and Anthony J. Mannucci\(^1\)

\(^1\) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

Joint 6\(^{th}\) ROM SAF User Workshop & IROWG-7 Workshop

Konventum, Helsingør (Elsinore), Denmark, September 19-25, 2019

Copyright 2019. California Institute of Technology. Government sponsorship acknowledged
Outline

Table of Contents

- Objectives ... (3)
- Introduction ... (4)
- Methodology ... (6)
- Results .. (7)
- Conclusions ... (13)
Objectives

1. Understand how ROs could complement climate research?

2. What new physics information could we get from GNSS signals?
Climate Feedback Definition:

The climate feedback for a variable, λ_x, can be expressed as the product of two terms [e.g., Soden et al., 2008]:

$$\lambda_x = \left(\frac{\partial R_x}{\partial X} \right) \cdot \left(\frac{dX}{dT_s} \right)$$

A) One of the radiative transfer

B) One of the climate response

Where R is the net top of the atmosphere (TOA) flux; X is a climate variable (e.g., T, q, A, C); and T_s is the surface temperature.
RO-BASED WATER VAPOR FEEDBACK [Vergados et al., 2016]

\[
\frac{dq}{dT_s} = 621.9907 \cdot \frac{P}{(P - e^2)^2} \cdot \frac{T^2}{b} \cdot \left[\frac{dN}{dT_s} + \frac{1}{T} \left(2N - \frac{aP}{T} \right) \frac{dT}{dT_s} \right]
\]

q is the specific humidity, N is the refractivity, T is the atmospheric temperature, T_s is the surface temperature, e is the partial pressure of water vapor, and a and b are constant values.
Methodology

COMPONENTS OF SOFTWARE

DATA
- **Data**
 - JPL, GPS-RO
 - ERA-Interim
 - Aqua/AIRS v6.0
 - MERRA v2.0

METHODOLOGY
- **Analysis**
 - Monthly zonal means
 - 9–year long time series
 - Interannual anomalies
 - 300 – 200 hPa

ANALYSIS
- **Retrieve**
 - Compare GPS-RO series with ERA-Interim, AIRS, and MERRA data sets.
 - Assess linear trends, seasonal variabilities, their anomalies, and quantify dT/dSST.

SET UP
- **Set Up**
 - 01/2007–12/2015
 - 30°S–30°N
 - Tropical Zones

STATISTICS
- **Statistics**
 - Mean climatologies
 - Difference & Std. Dev.
 - Monthly variabilities
 - Seasonal/Annual Trend

ERA-Interim
European Center for Medium-Range Weather Forecasts
Re-Analysis Interim

Aqua/AIRS
Atmospheric Infrared Sounder

MERRA
Modern-Era Retrospective Analysis for Research and Applications
Results (1/6) ($\pm 30^\circ, 300$ hPa)

Temperature Variability: 300 hPa, 30N/S, 01/2007 – 12/2015

Interquartile Range: 300 hPa, 30N/S, 01/2007 – 12/2015
Results (2/6) \((\pm 30^\circ, 300 \text{ hPa})\)

Temperature Comparisons with respect to JPL climatology

Temperature Anomalies Time Series
Results (3/6) ($\pm 30^\circ$, 200 hPa)

Temperature Variability: 200 hPa, 30N/S, 01/2007 – 12/2015

Interquartile Range: 200 hPa, 30N/S, 01/2007 – 12/2015
Results (4/6) (± 30°, 200 hPa)

Temperature Comparisons with respect to JPL climatology

Temperature Anomalies Time Series
The majority of the climate models show $dT/dSST$ at 250 hPa to have a wide range of values, fluctuating between 1.5 K/K and 2.5 K/K [Minschwaner et al., 2006]
1. All data sets, within their error uncertainty, agree on the temperature variability.

2. The variability captured in the inter-annual anomalies of all data sets are the same.

3. At 200 hPa, all data sets show the same dT/dSST response to surface warming.

4. At 300 hPa, all data sets agree with one another – except from GPS/RO showing 30% weaker signal.

5. All data sets fall within the model range (gray area) and are systematically smaller than the multi-model mean.