Uncertainty of temperature, humidity and pressure profiles from the first ROM SAF Climate Data Record.

J. K. Nielsen, H. Gleisner, S. Syndergaard and K. B. Lauritsen

ROM SAF

IROWG, Helsingør, 20 September 2019
Outline

Uncertainty in CDR’s

Assessing random uncertainty in ROM SAF CDR v1.0
 ROM SAF CDR v1.0
 GRUAN network
 RO-GRUAN biases
 RO - GRUAN random uncertainty
 S-matrix

Real problems in CDRs: Systematic errors
 Mission differences

Conclusion
Outline

Uncertainty in CDR’s

Assessing random uncertainty in ROM SAF CDR v1.0
- ROM SAF CDR v1.0
- GRUAN network
- RO-GRUAN biases
- RO - GRUAN random uncertainty
- S-matrix

Real problems in CDRs: Systematic errors
- Mission differences

Conclusion
Uncertainty in CDR’s, why care about random errors?

There is a demand for long term 1D-Var products - especially water vapor (Copernicus, G-Vap, GRUAN...)
Systematic uncertainties are determining for quality of gridded data and trends.
Random uncertainty is determining the amount of observational information in CDR’s.
Outline

Uncertainty in CDR’s

Assessing random uncertainty in ROM SAF CDR v1.0
 ROM SAF CDR v1.0
 GRUAN network
 RO-GRUAN biases
 RO - GRUAN random uncertainty
 S-matrix

Real problems in CDRs: Systematic errors
 Mission differences

Conclusion
> 10^7 profiles
> 10^6 validation plots

Bending angle
Refractivity
Dry temperature
Temperature
Spec. humidity
Pressure
Surface pressure
+ gridded data
Specific humidity retrieval.

Method: 1D-Var
(http://www.romsaf.org/product_documents/romsaf_atbd_1dvar.pdf)

I.e., it is a tropospheric humidity product.
It is not the usual RO < 0.2 % accuracy
Accurate stratospheric RO temperatures used as reference. Tropospheric GRUAN sp. hum. and temperature used as references. We do not expect high accuracy as known to RO in the stratosphere.
GRUAN humidity and temperature comparison method

- 16552 collocations 2006-2016. dist < 300km, t < 3 h
- Interpolation to 100 m grid

For standard deviation:
- Train box filter (MCMC): \(\min \{ q_{\text{RO}} - F(q_{\text{GRUAN}}) \} \)
- GRUAN \(\rightarrow \) F. Filter width = 0.5 - 2.0 km.
- Standard deviation \(\rightarrow \) Collocation distance linear regression
- Extrapolation to zero distance.
Estimated uncertainty dominated by systematic GRUAN uncertainty.
Related issue: Mid latitude specific humidity artefact

SH mid latitudes:

Tropics:
Almost gone in wth ERA5

SH mid latitudes:

Tropics:

IROWG, Helsingør, 20 September 2019
Absolute values for reference

![Graph showing absolute values for reference](image-url)
Estimated uncertainty dominated by random RO uncertainty.
Specific humidity random uncertainty consistent.
Stratospheric temperature accuracy is overestimated.
Next step; compare uncertainty correlations
- GRUAN is not there yet.
3CH vertical resolution issue

But then we can infer uncertainty covariance from the data? (Refractivity error covariances shown here)
High vertical resolution is punished... Not fair to sondes ↓

This can most likely be improved
Outline

Uncertainty in CDR’s

Assessing random uncertainty in ROM SAF CDR v1.0
 ROM SAF CDR v1.0
 GRUAN network
 RO-GRUAN biases
 RO - GRUAN random uncertainty
 S-matrix

Real problems in CDRs: Systematic errors
 Mission differences

Conclusion
Issue number I: Mission differences

Metop:

COSMIC-I:

Somebody: Fix this!
Issue number II: Background stability (not)

(Metop, ERA-I background):

(Metop, ERA5 background):

Should we de-trend and remove transient features from background. I think so.
Outline

Uncertainty in CDR’s

Assessing random uncertainty in ROM SAF CDR v1.0
- ROM SAF CDR v1.0
- GRUAN network
- RO-GRUAN biases
- RO - GRUAN random uncertainty
- S-matrix

Real problems in CDRs: Systematic errors
- Mission differences

Conclusion
Conclusions

- RO humidity accuracy comparable to IASI
- Known biases to some degree reduced with ERA5.
- Specific humidity uncertainty consistent with GRUAN, but there is potential for improved tropospheric information content.
- Random uncertainty: Still room for improvement, but we are getting there.
- Unstable background: We can maybe fix it.
- Intermission “bias” below 3 km: Really serious problem that the community should focus on.
- Next steps: New background (ERA5.1?); Correlation validation; Inferred uncertainty.