Recent developments on the assimilation of GNSS-RO bending angles in the Météo-France 4D-Var system

Dominique Raspaud MÉTÉO-FRANCE/Dr/CNRM
IROWG 2019, Elsinore, 19-25 september 2019
Outline

1. Current assimilation of GNSS-RO data at Météo-France
2. Use of new observations
3. Tests on the 2D bending angle operator
4. Conclusion and prospect
Outline

1. Current assimilation of GNSS-RO data at Météo-France
2. Use of new observations
3. Tests on the 2D bending angle operator
4. Conclusion and prospect
The use of GNSS-RO data at Météo-France

In the global 4D-Var data assimilation system ARPEGE

- ≃ 120,000 data per 6-hour assimilation window (∼ 1% of the total observations)
- TERRASAR-X, TANDEM-X
- METOP
- COSMIC
GNSS-RO operational assimilation at Météo-France

In the global 4D-Var data assimilation system ARPEGE

- since 2007
- assimilation of bending angles up to 50 km
- rising/setting occultations
- 1D observation operator
- tangent point drift taken into account
- anchor data for variational bias correction
Outline

1. Current assimilation of GNSS-RO data at Météo-France
2. Use of new observations
3. Tests on the 2D bending angle operator
4. Conclusion and prospect
New observations

GRAS on Metop-C

- Metop-C data assimilated in ARPEGE operational system since July 2019
- ROM SAF BUFR files
- Assimilated from 10 km up to 50 km in the tropics, from 8 km elsewhere (as for Metop-A & B)
- 25% additional GNSS-RO data
New observations

GRAS on METOP-C

- quality comparable to METOP-A and METOP-B
 METOP-C + METOP-B (experiment, black) compared to METOP-B (reference, red)
New observations

GRAS on METOP-C

- forecast score cards against radiosondes and IFS analysis for Geopotential, Temperature, Wind and Humidity over **NH** (left) and **SH** (right) from 2019/04 to 2019/06:

<table>
<thead>
<tr>
<th>Geopotential</th>
<th>Ref. Range</th>
<th>Radiosondes 0H to 96H timestep 12H</th>
<th>IFS analysis 0H to 102H timestep 6H</th>
</tr>
</thead>
<tbody>
<tr>
<td>100hPa</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤ ➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
</tr>
<tr>
<td>500hPa</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤ ➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
</tr>
<tr>
<td>850hPa</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤ ➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
</tr>
<tr>
<td>1000hPa</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤ ➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Ref. Range</th>
<th>Radiosondes 0H to 96H timestep 12H</th>
<th>IFS analysis 0H to 102H timestep 6H</th>
</tr>
</thead>
<tbody>
<tr>
<td>100hPa</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤ ➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
</tr>
<tr>
<td>500hPa</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤ ➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
</tr>
<tr>
<td>850hPa</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤ ➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
</tr>
<tr>
<td>1000hPa</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤ ➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wind</th>
<th>Ref. Range</th>
<th>Radiosondes 0H to 96H timestep 12H</th>
<th>IFS analysis 0H to 102H timestep 6H</th>
</tr>
</thead>
<tbody>
<tr>
<td>250hPa</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤ ➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
</tr>
<tr>
<td>500hPa</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤ ➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
</tr>
<tr>
<td>850hPa</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤ ➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Humidity</th>
<th>Ref. Range</th>
<th>Radiosondes 0H to 96H timestep 12H</th>
<th>IFS analysis 0H to 102H timestep 6H</th>
</tr>
</thead>
<tbody>
<tr>
<td>400hPa</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤ ➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
</tr>
<tr>
<td>700hPa</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤ ➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
</tr>
<tr>
<td>850hPa</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
<td>➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤ ➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤➤</td>
</tr>
</tbody>
</table>

- statistically significant improvement for geopotential and temperature for most of the domains at short range
New observations

Testing KOMPSAT-5 (AOPOD)

- available since May 2019
- 14% additional GNSS-RO data over globe
- first tests by assimilating the data from 0 up to 50 km

KOMPSAT-5 AOPOD data over a 24h-period (2019/06/01)
New observations

Testing KOMPSAT-5 (AOPOD)

- O-B and O-A bending angle departure statistics over Globe for a 1-month period (2019/06): operational GPSRO + KOMPSAT-5 (exp, black) compared to operational GPSRO (reference, red)

- promising results: fit to guess and analysis rather similar to other GPSRO data
New observations

Testing KOMPSAT-5 (AOPOD)

- forecast score cards against radiosondes and IFS analysis for Geopotential, Temperature, Wind and Humidity over SH for a 1-month period (2019/06):

<table>
<thead>
<tr>
<th>Ref. Range</th>
<th>Radiosondes 0H to 96H timestep 12H</th>
<th>IFS analysis 0H to 102H timestep 6H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geopotential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100hPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500hPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>850hPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000hPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100hPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500hPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>850hPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000hPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250hPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500hPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>850hPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400hPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700hPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>850hPa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- statistically significant improvement for geopotential for most of the domains at short range, slight positive impact for other parameters in the troposphere.

▲ 2D significatively better than 1D (99.5% confidence)
▼ 2D significatively worse than 1D (99.5% confidence)
1. Current assimilation of GNSS-RO data at Météo-France
2. Use of new observations
3. Tests on the 2D bending angle operator
4. Conclusion and prospect
The current 1D observation operator

1D bending angle operator that doesn’t take into account the 2D nature of the measurement and integrates:

$$\alpha(a) = -2a \int_{a}^{\infty} \frac{d\ln(n)/dx}{\sqrt{x^2 - a^2}} dx$$

(1)

where $x=nr$

refractive index \times *radius*

1D operator only requires a single profile at a given location
Towards a 2D observation operator in ARPEGE

- 2D operator: the NWP information must be available at multiple locations within a 2D slice defined by the 2D occultation plane (Healy et al. 2007)
- existing code for the 2D operator developed and used at ECMWF (Healy et al. 2007)
- implementation in IFS: 31 NWP profiles in the 2D occultation plane separated by 40 km
- adjustment of the ECMWF code to the stretched and tilted ARPEGE grid
Experiments with 2D operator

Implementation of a set of experiments

- 2-month period (March-April 2019)
- operational version of the model (all observations and full resolution)
- reference: 1D operator
- 2D experiments: tests on 5 numbers of NWP profiles in the 2D plane
 - 11 profiles
 - 21 profiles
 - 31 profiles
 - 51 profiles
 - 101 profiles
Impact of 2D

- O-B and O-A bending angle departure statistics over Globe for a 1-month period (2019/03): 2D with 11 profiles (exp, black) compared to 1D (reference, red)

- more observations assimilated with 2D (+2% < 10 km)
- better fit to guess (std dev reduced < 15 km and bias reduced by 10 to 20% > 35 km)
Impact of 2D on the forecast skills

Forecast score cards (31 profiles) over SH for the 2-month period 2019/03/05 to 2019/05/05:

- Statistically significant improvement compared to 1D for geopotential at short range for all domains (SH, NH, tropics). Slight positive impact for other parameters / ranges.

![Table showing forecast scores for different parameters and ranges](image)

- 2D significantly better than 1D (99.5% confidence)
- 2D significantly worse than 1D (99.5% confidence)

Statistically significant improvement compared to 1D for geopotential at short range for all domains (SH, NH, tropics). Slight positive impact for other parameters / ranges.
Impact of 2D on the forecast skills

- Forecast score cards against IFS analysis (2D with **31 profiles**) over NH and **North America** for a 2-month period (2019/03/05 to 2019/05/05):

![Bootstrap test on RMSE - GEOPOTENTIAL](image)

- Improvement with 2D for geopotential at short range in altitude
- BUT clear deterioration in the troposphere over North America at medium range for most parameters (Z, T, wind, Hu).
Computing cost of the 2D operator

- strong impact mainly in the first minimization
- elapsed time for the first minimization in ARPEGE depending on the number of profiles:

<table>
<thead>
<tr>
<th>Number of profiles</th>
<th>1</th>
<th>11</th>
<th>21</th>
<th>31</th>
<th>51</th>
<th>101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean time (seconds)</td>
<td>538 s</td>
<td>578 s</td>
<td>612 s</td>
<td>647 s</td>
<td>766 s</td>
<td>1066 s</td>
</tr>
</tbody>
</table>

- cost increased by 20% with 31 profiles compared to 1D, nearly 100% with 101 profiles!
Outline

1. Current assimilation of GNSS-RO data at Météo-France
2. Use of new observations
3. Tests on the 2D bending angle operator
4. Conclusion and prospect
Conclusion and prospect

Use of new observations

- Beneficial assimilation of METOP-C data in the Météo-France operational global model with a significant positive impact on the forecast skills.
- Promising tests on KOMPSAT-5 data with planned tests excluding the data below 10 km in the tropics.

2D operator

- Neutral to slightly positive impact in the troposphere.
- Encouraging improvement of the scores for geopotential.
- Troubling degradation of the scores over North America:
 - \rightarrow GPSRO information inconsistent with conventional observations?
 - \rightarrow Influence of the stretched grid?
- Planned tests with a reduced number of profiles in the minimization in order to reduce the computing cost.
- Compromise between slight improvement and increased computational cost ...