The Significant Roles of COSMIC2 GNSS RO in NOAA Integrated Calibration/Validation System for NWP

Changyong Cao¹, Shu-peng Ho¹, Xinjia Zou², Erin Lynch³, Bin Zhang³, and Wei Xia-Serafino⁴

¹NOAA/NESDIS/Center for Satellite Applications & Research (STAR); ²GST; ³University of Maryland/CISESS; ⁴NOAA/NESDIS/OPPA

Email: changyong.cao@noaa.gov

Presented at the IROWG7, Helsingør, Denmark, 9/19-9/25/2019
Operational Ready GNSS RO data for NOAA NWP

- Currently ~2500 RO profiles are available daily for operations
- COSMIC2 will produce > 4000 profiles daily
- Metop A/B/C ~600 each
- KOMPSAT-5 ~400 daily
- Smaller amounts from other missions
- Declining number of profiles from COSMIC1
- PAZ not yet used
- CWDP not yet used

Daily RO Profiles in GDAS, 01/2017 to 09/2019

Much awaited COSMIC2 GNSS Radio Occultation for NWP
COSMIC2 GNSS RO Roles

- The success of COSMIC2 ushers in a new era of RO for operational NWP, which will have profound impacts on all activities related to atmospheric sounding.

- NOAA is strengthening support for COSMIC2, recognizing its significance.

- COSMIC2, together with Metop RO, is expected to become an on-orbit reference for atmospheric sounding, establishing consistency for all measurements.

The COSMIC2 “anchor” measurements

• CWDP
• CRTM
• NCEP/GFS/GDAS
• MiRS
• MiRS (inherited + algorithm uncertainties)
• MW retrievals
• MW/IR Retrievals NUCAPS (Inherited + algorithm uncertainties)
• MW Sounder (ATMS/AMSU) (Uncertainties in antenna, BB emissivity, side lobe, spectrum, Algorithm, cal thermal dynamics, human errors)
• IR Hyperspectral sounder CrIS/IASI (cloud clearing, small uncertainties in spectra, BB emissivity change)
• Radiosonde (NPROVS) (uncertainties in SI traceability, consistency between measurements)

To be endorsed by WMO/GSICS as on-orbit reference standard
CWDP (Commercial Weather Data Pilot) is coming

COSMIC2, together with Metop, will provide important reference for all RO measurements, from complex missions to simple experiments
Background- NOAA Integrated Calibration/ Validation System (ICVS)

- The development of the current version of ICVS started in 2011 for Suomi NPP launch, with continuous improvements
- Monitors ~30 instruments on eight NOAA Polar orbiting Satellites, and ABI on 2 geostationary satellites
- Monitoring includes spacecraft diary, ACDS, instrument calibration related parameters
- Monitors 4594 parameters for JPSS satellite instruments, of which 927 for ATMS, 1495 for CrIS, 1143 for VIIRS, and 843 for OMPS.
- A total of 2457 parameters for all other POES Satellites, including NOAA instruments on Metop A/B/C.
- Users include NWP centers, instrument scientists, program managers, other data users.

ICVS monitors all NOAA satellites and instruments, with ~7000 parameters updated daily on the web
Background- Integrated Calibration/Validation System (ICVS)

- Near real-time performance monitoring for all NOAA environmental satellites and instruments
- Benefits:
 - Near real time and long term instrument status, performance monitoring, and anomaly diagnosis
 - Near real time and long term level 1 data product quality monitoring
 - Provide real time support for sensor calibration activities
 - Provide rapid and preliminary estimate of satellite data impact in NWP applications
 - Ensure the integrity of the climate data records from all satellite instruments
- Inter-calibration with a constellation of international satellites in conjunction with the Global Space-based Inter-calibration system (GSICS)

Make satellite observations intercomparable and tied to international standards for weather, climate, ocean and other environmental applications
GNSS RO ICVS Extension

• GNSS radio occultation (RO) has been recognized as a key observable for Numerical Weather Prediction (NWP) and climate change detection.

• It has matured to become an important, sustained component of NOAA satellite observations and contributor to NWP, complementing microwave and infrared sounding measurements.

• The successful launch of FORMOSAT-7/COSMIC-2 marks the transition of GNSS RO from research to operations for weather forecast.

• It is important to ensure the consistency, accuracy, precision of the measurements with well understood uncertainties.

GNSS RO ICVS is a natural extension of the NOAA ICVS system, with more dynamic and interactive capabilities.
GNSS RO Integrated Cal/Val System (ICVS)

- GNSSRO ICVS with a web interface to support all RO missions including COSMIC-2, KOMPSAT5, and CWDP. The system includes:
 - Monitoring RO product parameters and instrument performance at all levels.
 - Routine comparison of atmospheric profiles with other satellite observations and retrievals including microwave, and infrared.
 - Routine comparison of profiles with those from Radiosondes.
 - Dynamic web interface with many capabilities.
 - Long-term monitoring of the parameters.

System updated daily on the web; will be available for everyone to use.
Early COSMIC2 Data

Launched on 6/25/2019, started producing data a few weeks later
All available parameters are monitored with interactive functions (sample bending angle shown here)
Comparisons between ATMS Ch6 and GPS RO

S-NPP ATMS Ch.06 O-B Trend w.r.t. GPS RO
53.596±0.115 GHz, clear-sky, over ocean, latitude: [-60, 60]

Bias between ATMS and RO are routinely monitored; anomalies are investigated
Comparisons with SNPP/NOAA-20 ATMS

- Comparison with ATMS on SNPP/NOAA-20 reveals calibration anomalies
- NOAA-20/ATMS early orbit bias due to calibration issues
- Use RO-CRTM for double differencing to study biases between ATMS on SNPP and NOAA-20 (ROM SAF RO CDR/ICDR used for analysis)
Infrared Sounder Calibration Traceability

Both GNSS Radio Occultation (RO) and hyperspectral infrared sounder (NOAA-20/CrIS) measurements are accurate, stable, and SI traceable (Time or Atomic Frequency Standard (AFS) vs. Radiance Standard, respectively)

Infrared Sounders have a long chain of traceability compared to RO
Caveats in Comparing RO and IR sounding

- Effects of cloud for IR sounders (clear sky hard to find)
- Time difference can be several hours
- Colocation uncertainties: point/line integral in RO, vs. pixel in IR
- Active limb sounding in RO vs. nadir sounding in IR
- Samples: a few hundred ROs per satellite per day vs. full global coverage twice daily
- RO uncertainties in the upper atmosphere due to small bending angle
- RO Low troposphere uncertainties due to water vapor, SNR, turbulence, multipath

Comparing RO and IR observations is challenging which leads to large uncertainties in studies
Spatial Characteristics of RO vs. IR sounding

GNSS RO are point measurements (or line integrals over up to 250km ground track); a few hundred points per day globally for each satellite; a single measurement parameter.

Infrared sounder has global coverage twice daily; simultaneous measurement of temperature, water vapor, ozone, trace gas.

Comparison is not straight forward
Comparison of COSMIC1 RO and CrIS Brightness Temperatures

Major challenges: Spatial matching; clear sky; time difference

Some data matched well, but others didn’t due to complex issues; not all issues are due to measurements
Cross Comparison with Radiosonde

- Well established system for atmospheric sounding product validation (NPROVS)
- Comparisons involves radiosondes, ECMWF, GFS, COSMIC, GRAS, and Microwave retrievals (MiRS).

Leveraging the NOAA NPROVS system for validation
NOAA/STAR GNSS RO Capability Development

Data Assimilation
- Non-local Bending Angle (Ray-tracing)
- Local Bending Angle (Forward Abel)
- Local Refractivity

As JCSDA partners, STAR and NCEP work closely to perform impact assessment.

Multi-sensor Validation
- Radiosonde (NPROVS)
- Microwave Sounders
 - ATMS, AMSU-A
- Infrared Sounders CrIS, AIRS, IASI
- Retrievals (temperature, water vapor)
- ECMWF model

Well established NOAA system ICVS and NPROVS for sounding validation.

Integrated Cal/Val System (ICVS) for Monitoring
- Operational monitoring
 - RO measurements
 - Parameters for all RO data levels
 - Statistics
 - Long-term monitoring

Well established system for all NOAA satellites expanded to include RO.

RO Data Processing
- Telemetry (RDR, L0)
- Excess phase (SDR, L1a)
- POD (SDR, L1a)
- Bending angle (SDR, L1b)
- Impact parameter (SDR, L1b)
- Refractivity (EDR, L2a)
- Geometric height (EDR, L2a)
- Temperature, water vapor, pressure (EDR, L2b-c)

L0->L1 experimental
L1->L2 using ROPP + STAR in house

RDR – Raw Data Record; SDR – Sensor Data Record; EDR – Environmental Data Record

ICVS for COSMIC2 is a critical tool for data quality assurance at all levels.
Conclusion

• NOAA STAR has developed a comprehensive integrated cal/val system (ICVS) to ensure the data quality of all NOAA satellite measurements, including Radio Occultation, for which COSMIC2 will play an important role in many areas.

• This web-based system supports instrument performance monitoring, inter-comparisons with other independent measurements, and data assimilation in collaboration with data users.

• The system is supported by subject matter experts with deep dive analysis on the fundamental measurements, leveraging expertise in all remote sensing measurement techniques, and related traceability/standards.

• Radio occultation is becoming increasingly important for numerical weather prediction, which requires similar level of support as for microwave and infrared sounding instruments.

• The next step is to develop low level processing capabilities & incorporate it in ICVS (Level 0/RDR->Level 1/SDR->Level 2/EDR) to support full chain processing validation.
Acknowledgements

• Thanks to the COSMIC2 team for the hard work, including NSPO, UCAR, NOAA/NESDIS/OPPA, NOAA/NESDIS/STAR, JCSDA, USAF, and others

• Thanks to EUMETSAT, ROM SAF for collaboration and technical assistance

• Special thanks to Rich Ullman of NOAA/NESDIS/OPPA for initiating the COSMIC2 cal/val project at STAR