Towards near-real-time radio occultation processing operations for weather forecasting applications

Chad Galley, Byron Iijima, Yoaz Bar-Sever
Jet Propulsion Laboratory, California Institute of Technology
Sentinel-6/Jason-CS RO NRT processing at JPL

- JPL is responsible for processing Sentinel-6 RO occultations in near real-time (NRT)
 - EUMETSAT and ROM SAF are primary producers of the official non-time-critical (NTC) product
 - JPL will produce a secondary/validation NTC product

- Important requirements to be met:
 - 17 min from time that instrument data is received to availability of NRT BUFR product on WMO GTS
 - LEO POD accuracy:
 - Position: 10 cm/axis, RMS
 - Velocity: 0.1 mm/s, RMS, along track
 - 770 profiles per day (post-QC)
 - 94% availability over any one-month period

- Bending angle uncertainties:
 - 150 m
 - 1.5 km
JPL GPS Occultation Analysis Software (GOAS)

• Used by JPL RO processing group to make science products for atmosphere/climate research

• Implements some of the original RO processing algorithms [e.g., see Hajj et al (2001)]
 – Fjeldbo’s geometric optics retrieval algorithm
 – Standard Abel inversion
 – No statistical optimization used for bending angle retrieval

• Processes multi-mission data including (but not limited to):
 – CHAMP
 – SAC-C
 – COSMIC
 – GRACE
 – TerraSAR-X
 – TanDEM-X
 – KOMPSAT-5
 – PAZ
 – GRACE-FO

• Features:
 – Handles occultations tracked with closed-loop, open-loop, or both
 – Calibrates links using zero-, single-, or double-differencing
 – Implements the canonical transform for low-altitude bending angle retrieval
JPL GPS Occultation Analysis Software (GOAS)

- **Architecture:**
 - Perl
 - Fortran 77 & 90
 - A tiny bit of C

- **Dependencies:**
 - JPL GIPSY libraries and POD software
 - JPL's qregres program to calibrate occultation and, if needed, clock and ground reference links
 - fftw2

- **Limitations of GOAS for Sentinel-6 NRT processing**
 - GPS only
 - LEO POD solutions provided in separate process
 - Serial processing
 - File-based processing
 - Depends on GIPSY software libraries – GIPSY is no longer maintained nor supported

- **Conclusion:** A new RO processing software is needed at JPL to meet Sentinel-6 NRT processing requirements
JPL GNSS Radio Occultation Atmospheric Retrieval Software (ROARS)

• Implements GOAS algorithms with flexibility to include more (e.g., phase matching)

• Supports multi-mission processing of current and future missions including:
 – Daily processing of GeoOptics data
 – NRT and daily processing of Sentinel-6 data
 – Daily processing of COSMIC-2 once data is publicly available

• Features:
 – Processes occultations from multiple GNSS constellations
 – Parallel processing of retrievals
 – Currently handles occultations tracked with open-loop; others planned for inclusion
 – Currently calibrates links using zero-differencing; others planned for inclusion
 – Implements the canonical transform for low-altitude bending angle retrieval
 – Interactive and scriptable to handle operational processing, trouble-shooting, debugging, algorithm development, receiver software assessments,...
JPL GNSS Radio Occultation Atmospheric Retrieval Software (ROARS)

- **Architecture:**
 - C++ for speed and organization of data into classes/types
 - Python3 for user interface (interactive and scripts)
 - pybind11 library for exposing C++ functionality to Python

- **Dependencies:**
 - JPL GCORE software libraries
 - JPL’s RTGx software for LEO and GNSS POD
 - automate – JPL Python package for date/time handling, automation & system tasks (incl. with ROARS)
 - pybind11 (incl. with ROARS)
 - fftw3

- **Easy to install -- uses CMake build system from a Python setup.py script**
JPL GNSS ROARS: Objects

- Classes to hold and manipulate data:

 | Earth | Spacecraft | CanonicalTransform |
 | Orbit | Link | Refractivity |
 | Clock | BendingAngle | NavBits |
 | Attitude | GeometricOptics | ... |

- Classes to facilitate mathematical operations on data (roars.mathlib)

 - Smoothers: LocalPolyRegression, RunningMean, RunningMedian,...
 - Interpolators: LinearPoly, CubicSpline, PiecewiseConstant, Poly,...
 - Fitters: LinearLeastSquares, PolyLeastSquares,...
 - Differentiators: FiniteDifference, NoiseRobust,...
 - Integrators: Riemann, Trapezoidal, Simpson, GaussChebyshev,...

- Classes to manage processing:

 Olog, OccultationManager, ProcessingManager

- Python classes to facilitate easy file I/O, object manipulations, and visualization:

 LinkObjects, SpacecraftObjects, MeasObjects, BendingAngleObjects,...

- Highly configurable

 - Accommodates all GNSS signal frequencies
 - Multiple reference ellipsoids available (WGS84, GRS80, user-defined,...)
 - Multiple gravity models available (EGM2010, OSU91a,...)
 - Processing strategy customized by an input tree
JPL GNSS ROARS: Flexible tree-based processing

- Tree-driven automated processing
 - One input file containing all input parameters, configurations, server/directory information, etc

```
BendingAngle:
  L1:
    FineGrained:
      Smoother:
        Name: LocalPolyRegression
        Smooth:
          Degree: 3
          Window: 1.0
        Decimate:
          Interval: 0.32
          Begin: 500 # Number of points, not seconds
    StaticSpacecraft: Transmitter
  GeometricOptics:
    MaxImpactParameter: 120e3 # [m]
    MaxIterations: 30
    CanonicalTransform:
      LimbHeight: 0.0
      ScreenInterval: 1.0 # [m]
  CoarseGrained:
    Smoother:
      Name: LocalPolyRegression
      Smooth:
        Degree: 3
        Window: 2.0
        Decimate:
          Interval: 0.32
          Begin: 500 # Number of points, not seconds

L2:
```
JPL GNSS ROARS: Flexible tree-based processing

- Tree-driven automated processing
 - One input file containing all input parameters, configurations, server/directory information, etc.

```
BendingAngle:
  L1:
    FineGrained:
      Smoother:
        Name: LocalPolyRegression
        Smooth:
          Degree: 3
          Window: 1.0
        Decimate:
          Interval: 0.32
          Begin: 500  # Number of points, not seconds
      StaticSpacecraft: Transmitter
    GeometricOptics:
      MaxImpactParameter: 120e3  # [m]
      MaxIterations: 30

  CoarseGrained:
    Smoother:
      Name: LocalPolyRegression
      Smooth:
        Degree: 3
        Window: 2.0
      Decimate:
        Interval: 0.32
        Begin: 500  # Number of points, not seconds

L2:
```
JPL GNSS ROARS: Flexible tree-based processing

- Tree-driven automated processing
 - One input file containing all input parameters, configurations, server/directory information, etc

```plaintext
BendingAngle:
  L1:
    FineGrained:
      Smoother:
        Name: LocalPolyRegression
        Smooth:
          Degree: 3
          Window: 1.0
        Decimate:
          Interval: 0.32
          Begin: 500 # Number of points, not seconds
    StaticSpacecraft: Transmitter
  
CanonicalTransform:
  LimbHeight: 0.0
  ScreenInterval: 1.0 # [m]

CoarseGrained:
  Smoother:
    Name: LocalPolyRegression
    Smooth:
      Degree: 3
      Window: 2.0
    Decimate:
      Interval: 0.32
      Begin: 500 # Number of points, not seconds

L2:
```
S-6/J-CS RO NRT processing architecture & data flow

1. Level 0 data and auxiliary telemetry
2. RO NRT L1b, L2 products (BUFR)
3. RO NRT & NTC L1b, L2 Products (NetCDF)
4. Auxiliary products needed for EUMETSAT RO NTC processing
5. Auxiliary products used for JPL RO processing
6. RO L0, L1, L2 Products
7. EUMETSAT L1b NTC product (NetCDF)
8. ROM SAF L2 NTC product (NetCDF)

With best-effort to achieve 60-day latency
Real-time GPS POD at JPL GDGPS Operations Centers

GNSS orbital velocity overlaps

June 2018 through Oct 2018

Cumulative distribution function

Along-track velocity overlap (mm/s)

- GPS real-time, real-time
- R real-time, real-time
- GPS real-time, final

R802
GNSS real-time clock bias rates
Summary

• New GNSS RO processing software (ROARS) being developed at JPL
 – Leverages time-tested algorithms from JPL’s GOAS with the flexibility to add more

• ROARS:
 – supports both NRT processing for weather applications and daily processing for science applications
 – is flexible for building mission-specific processing packages
 – processes occultations from multiple GNSS constellations
 – will be implemented with parallelization in a hot-redundant operating environment to support Sentinel-6 high-availability and timeliness requirements

• RO NRT processing at JPL utilizes:
 – JPL’s RTGx software for LEO POD
 – JPL’s GDGPS operational service for real-time GNSS POD products, navigation data bits, and high-availability operational environment

• ROARS tested operationally processing GeoOptics data

• Sentinel-6/Jason-CS RO products generated by the JPL ROARS system:
 – NRT L1b and L2 products distributed on GTS in BUFR format
 – NTC L1 and L2 products will be available from ROM SAF and NASA’s GES DISC archive
 – See the “Sentinel-6 Project GNSS-RO Product Description Document”
jpl.nasa.gov