ISSI-BJ Forum on Exploring Greenhouse Gases, Water and Climate Changes by LEO-LEO Occultation: Main Results and Next Steps

Gottfried Kirchengast (1,4), Daren Lv (2), Yueqiang Sun (3,4), Armin Löscher (5), Stig Syndergaard (6), Kerri Cahoy (7), Maurizio Falanga (8), Quanlin Fan (3,4), Congliang Liu (3,4)

(1) Wegener Center for Climate and Global Change (WEGC) and Institute for Geophysics, Astrophysics, and Meteorology/Institute of Physics, University of Graz, Graz, Austria;
(2) Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing, China;
(3) National Space Science Center (NSSC), Chinese Academy of Sciences, Beijing, China;
(4) JOAC–Joint Laboratory on Occultations for Atmosphere and Climate by NSSC and University of Graz;
(5) ESA–Future Missions & Instrument Division, Noordwijk, Netherlands;
(6) Danish Meteorological Institute, Copenhagen, Denmark;
(7) Massachusetts Institute of Technology (MIT), Cambridge, MA, USA;
(8) International Space Science Institute-Beijing (ISSI-BJ), Beijing, China

E-Mail: gottfried.kirchengast@uni-graz.at

Mon 23rd Sep Session on New Techniques, ROM SAF-IROWG-2019 Workshop, Helsingør, DK, 19-25 Sep 2019
Progress in LEO-LEO occultation: results from the May 2016 interagency workshop on cooperation options towards a LEO-LEO mission

G. Kirchengast¹), A. Loescher²), A. von Engeln³)
1) Wegener Center, University of Graz, Austria
2) ESA/ESTEC, Noordwijk, Netherlands
3) EUMETSAT, Darmstadt, Germany

Thanks to all colleagues joining the workshop and the LEO-LEO forum! (see Minutes)
Ok, here’s about the lines along which we will walk through…

First a quick LEO-LEO refresher to furnish us a decent prep:

- Beyond GNSS radio occultation (GRO): LMO, LIO, LMIO
- How it works: LMIO measurement concepts and performance
- Aspects of exciting extensions/add-ons to LEO-LEO: Focus on simple VIS/IR clouds & water vapor imaging add-on to LMO and on NIDAR near-surf carbon monitoring add-on to LIO

Then, well prepared, the results from the LEO-LEO workshop:

- The WS Agenda based on the IROWG-4 recommendation
- The Minutes of Meeting incl. summary and discussion record
- Some (strange)Backinfos and Summary of main outcomes…
- Conclusion and prospects: link https://irowg.org/leoleo-forum
 - Contains the Agenda and MoM of this 2016 meeting…soon:

The Minutes of Meeting of the 2016 workshop for ref:
Setting the scene – now in July 2019: the ISSI-BJ Forum welcome slide... ...and participant group

EXPLORING GREENHOUSE GASES, WATER AND CLIMATE CHANGES BY LEO-LEO OCCULTATION

JULY 24–26, 2019

WI-FI:
Login via web: nssc-guest Username: issi-bj Password: guest
PLEASE COPY YOUR PRESENTATIONS TO

ROM SAF-IROWG-2019, Helsingør, DK, 20 Sep 2019
Setting the scene – the ISSI, the form of mtg, its objectives, and results as “readily accessible scient.magazine article”
ISSI-BJ Basic "Tools"

FORUMS
- **Objectives:** Open discussions
- **Participants:** 20-30 scientists
- **Duration:** 2 days
- **Output:** Taikong magazine
- **Support:** Accommodation in Beijing

INTERNATIONAL TEAMS
- **Objectives:** Research on **focused** topics
- **Participants:** 10-15 scientists
- **Duration:** 2 years, 1-2 meetings/year
- **Output:** Papers in scientific journals
- **Support:** Per diem + accommodation in Beijing

WORKSHOPS
- **Objectives:** Broad scientific area
- **Participants:** ~40 scientists
- **Duration:** One week
- **Output:** Book (peer reviewed)
- **Support:** Per diem + accommodation in Beijing Book publication cost

VISITING SCIENTISTS
- **Objectives:** Research (specific to visitor)
- **Duration:** As necessary
- **Output:** Publications / Management tasks
- **Support:** Travel + accommodation in Beijing

ROM SAF-IROWG-2019, Helsingør, DK, 20 Sep 2019
How to use the ISSI tools?

FORUMS
• No annual call
• May be *suggested* any time
• Submit an idea on max 1 page
• Ideas evaluated by the Science Committee

WORKSHOPS
• No annual call
• May be *suggested* any time
• Submit an idea on max 1 page
• Ideas evaluated by the Science Committee

INTERNATIONAL TEAMS
• **Call** for proposals released every year on January
• Proposals evaluated by the Science Committee

VISITING SCIENTISTS
• *Invited* by the Directorate and External Scientists
• Selected by the Directorate

ROM SAF-IROWG-2019, Helsingør, DK, 20 Sep 2019
ISSI Publications – TAIKONG for Forum outcome

Taikong
- Forum outcome
- Magazine with popular articles
- 14 issues

Annual Reports
- Summary of the yearly activities and publications
- Financial overview

Space Sciences Series of ISSI
- Workshops outcome
 - 3 ISSI-BJ issues
 - 1 Scientific Report

Individual papers
- Peer-reviewed international journals
- ISSI-BJ affiliation or with acknowledgement to ISSI-BJ

ROM SAF-IROWG-2019, Helsingør, DK, 20 Sep 2019
Obligations for reporting outcomes of ISSI-BJ Forums...

Final report -> TAIKONG Magazine
• Report sent to the PR & Editorial Manager
• Magazine published online & printed

Exploring greenhouse gases, water and climate changes by LEO-LEO occultation

Foreword

(Maurizio Falanga and Laura Baldis, please revise this section.)

This is the eighth successfully organized forum by the International Space Science Institute in Beijing (ISSI-BJ) in the framework of the Space Science Strategic Pioneer Project of the Chinese Academy of Sciences (CAS). ISSI-BJ forums are informal and free debates, brainstorming meeting, among some twenty-five high-level participants on open questions of scientific nature.
We must solve the global atmosphere & climate monitoring problem with benchmark data techniques since…

...these unique data serve as fundamental backbone and “true” reference standard to atmosphere and climate science & applications,

more specifically, three major reasons:

- to rigorously observe and learn, independent of models, how weather, climate and composition variability and change evolve, over weekly, monthly, seasonal, interannual, and decadal scales
- to test and guide the improvement of weather, climate and constituent models and thereby enhance their predictive skills for simulating future weather, climate and chemical composition
- to use the benchmark data as accurate observational constraints for natural and anthropogenic climate and composition change detection and attribution

...from the 9 “**high priority areas for action**” noted in the **IPCC 2001 report** (Summary for Policymakers, IPCC WG I, p. 17) - **still valid 18 years later in 2019:**

“**sustain and expand the observational foundation for climate studies by providing accurate, long-term, consistent data including implementation of a strategy for integrated global observations.**”
Climate monitoring principles
- Traceability to reliable reference standards

Fundamental Climate Data Records (FCDRs)
- long-term stability
- homogeneity & reproducibility
- global coverage
- accuracy
- adequate resolution in space and time

Focus on Essential Climate Variables (ECVs)
Example upper-air temperature in UTLS:
- horizontal resolution: 25 km in UT, 100 km in LS
- vertical resolution: 1 km UT, 2 km LS
- accuracy (root-mean-square) < 0.5 K
- stability of 0.05 K per decade UTLS (GCOS, 2016)
RO and LLO – do they provide the properties needed?

So, which properties need benchmark data to have and can RO and LEO-LEO (LLO) provide these?

Key properties:

• accurate (traceable to SI standards)
• long-term stable (over decades and longer)
• globally available (all weather, same above land and oceans, etc.)
• measure sensitive indicators of atmosphere and climate change, in a physically consistent manner, in particular:
 => GCOS Essential Climate Variables (ECVs) (in the atmosphere: temperature, water vapor, wind, greenhouse gases, etc.)
 [e.g., GCOS Guideline, GCOS-143(WMO/TD No. 1530), May 2010]

…basically, RO can provide such data for thermodynamic core ECVs over the troposphere and stratosphere (with focus on TBL upwards); LLO can do so for a near-complete set of atmospheric ECVs
Ok, again some lines along which we can walk through...
(starting here’s now a range of 16 excerpt slides from the ISSI-BJ Forum sci.challenges pres)

- Why care? – Why monitor GHGs, water and climate changes with benchmark data? And which techniques can achieve this?

- Beyond GNSS radio occultation (RO): LEO-LEO microwave and IR-laser occultation (LMO, LIO; LMIO; LLO) to vastly expand the RO Essential Clim Vars (ECVs) by GHGs, water,...

- How it works: LMIO measurement concept and performance

- Aspects of exciting extensions/add-ons to LEO-LEO (focus on VIS/IR clouds & water vapor imaging add-on to LMO; and mention NIDAR near-surf carbon monitoring add-on to LIO)

- Conclusions and next steps (this closing slide also contains a weblink towards on-line access to WEGC-related papers cited in this presentation)
Why care? – Let’s check GHGs/CO$_2$, how did we fare so far?

- Over the most recent decade (2006-2015) CO$_2$ emissions still rose faster than in any decade before – quo vadis?

~ 37 Gt CO$_2$ in 2018

[GCP-Global Carbon Project, 2016-2018]

Where does the Carbon go? – esp. the anthropogenic emissions of ~ 40 GtCO$_2$/yr mainly from fossil fuels?

(land use change emissions add $\sim 10\%$ to the fossil-fuel&Cement CO$_2$ emissions shown)
Where does the carbon go? – the excess carbon of ~11 GtC per year?

Perturbation of the global carbon cycle caused by anthropogenic activities, averaged globally for the decade 2008–2017 (GtC/yr)

The global carbon cycle

The budget imbalance is the difference between the estimated emissions and sinks.

Source: CDIAC, NOAA-ESRL, Le Quéré et al. 2018; Clais et al. 2013; Global Carbon Budget 2018
Where does the Energy go? – the excess energy of \(\sim 0.8 \text{ Jm}^{-2}\text{s}^{-1} \) (~13 ZJ/yr) due to the EEI?

Core – the TOA imbalance:

\[
\Delta I_{\text{EEI}} \cong \Delta F_{\text{ERF}} - |\alpha_{\text{FP}}| \cdot \Delta T_s
\]

Where does the energy go? – the excess energy of ~0.8 J per m² per sec?
Where does the energy go? – this is strongly co-determined by climate feedbacks…

Fig. 5. For a CO$_2$ doubling, (a) equilibrium temperature change and contributions to this temperature change because of the Planck response, combined water vapor and lapse-rate feedback, surface albedo feedback, and cloud feedback and (b) relative contribution of each feedback to the equilibrium temperature change reported in (a). The multimodel mean and plus or minus one standard deviation for 12 CMIP3 models are shown using results of Dufresne and Bony (2008).
Where does the energy go? – into transient changes and changes in extremes…
And how does the water change? – in all subsystems and all phases of water...
And how to model all these changes? – a formidable challenge at all scales…

- meshing challenges: topography, small-scale (weather) processes - grid spacing, resolution, parameterization,…
predictability of weather & climate by phys-math modeling – prediction (forecast), projection (scenario)

The concept of a skilful probabilistic forecast has been used as the basis to estimate the forecast skill horizon of ECMWF ensemble forecasts. The climatological (reference) probability density function (red line) has only a small overlap with the observation, represented by a probability density function which becomes arbitrarily narrow in the limit of zero observation error (black line). By contrast, the forecast probability density functions (violet, green and blue) match the observation probability density function increasingly well as the forecast time shortens. Consistently, the forecast cumulative distribution functions (defined by integrating the probability density functions; not shown) also approach the observation cumulative distribution function. To measure how close the forecast and observed distributions are, the Continuous Ranked Probability Score (CRPS), which is equal to the mean squared distance between the forecast cumulative distribution function and the observed cumulative distribution function, can be used.

Weather and climate prediction (forecast ensembles) (Buizza et al. ECMWF Newsl. 145, 2015)

Climate change projection (scenario ensembles) (Magnusson et al. ECMWF Newsl. 145, 2015)

Figure 5 The forecast skill horizon of ECMWF operational forecasts, constructed using published skill measures of (ENS) and seasonal (S4) forecasts.
Intro next-gen RO – the LEO-LEO occultation principle...

LEO-LEO Microwave and Infrared-laser Occultation (LLO):
from RO decimeter-wave L band signals to RO-type coherent signals at cm-mm (microwave) and μm (IR-laser) wavelengths

...in general “LLO”, specifically “ACCURATE concept”

(Schweitzer et al., JGR, 116, D10301, 2011)

LMIO constellation 2Rx+2Tx

LMIO coverage 30d, 2Rx+2Tx

(Kirchengast-Schweitzer GRL, 2011, AM fig S1)
Backinfo#1: Which type of highly accurate X-meter is LLO?

X-meters in stock:
- Radiometer
- Refractometer
- Absorptometer
- Barometer
- Thermometer
- Hygrometer, etc.

So which one? (and at which altitudes?)

Backinfo#1 answer:
1. Refractometer (~TBL-MP)
2. Absorptometer (~TBL-SP)
3. Barometer (~TBL-MP)
4. Thermometer (~TBL-MP)
5. Hygrometer (~TBL-TP)

TakehomeMessage: It’s near’all these meters! But you’ve to work properly t’dig out the barometer, thermometer and hygrometer under the refractometer and absorptometer.
wege entstehen, indem wir sie gehen
paths emerge in that we walk them

Backinfo#1a Absorptometer? LEO-LEO Occultation

LMO: MW refraction&absorption: established by GNSS RO heritage and ACE+ and ATOM(M)S concepts…

[Detailed LMO performance study: Schweitzer et al., JGR 116, D10301, 2011]

- Exploits refraction and (differential) transmission of MW signals (~17.25, 20.2, 22.6; opt. 179, 182 GHz, at the 22/183 GHz water vapor absorption lines; the Fig. left also indicates an optional ozone line) between LEO Tx and LEO Rx satellites.

- Measurements of phase delay & amplitude → bending angle & transmission → refractivity & absorption coeff. (freq) → pressure, temperature, humidity (independently over full UTLS domain).
Example: LMO lower tropo profiling (high-lat)

Large spread among sea ice melting predictions
- Uncertainties in modeled clouds & energy fluxes
- Passive obs limited utility due to vertical resolution & sensitivity to surface emissivity & clouds

ATOMMS: routinely profile atmospheric structure to surface, sonde-like with better accuracy
- Resolve near surface temperature, stability, water vapor & cloud LWC structure

Profile: Barrow, Alaska

Kursinski et al. AGU 2015

from AGU Fall Meeting 2015 pres (session A43H)
wege entstehen, indem wir sie gehen
paths emerge in that we walk them

Backinfo#1b Absorptometer? **LEO-LEO Occultation**

LIO: differential log-transmission over *narrow delta-freq in IR-laser occultation* ("differential absorption principle")

=> accurate profiles of GHGs and line-of-sight wind speed, building on LMO T, p, z.

abs. channel 18O
ref. channel
abs. channel 12CO$_2$
abs. channel H$_2$O

[Details on LIO channel selections etc: Kirchengast and Schweitzer, GRL 38, L13701, 2011;
on accurate line spectroscopy needs: Harrison, Bernath, Kirchengast, JQSRT 112, 2347, 2011]
And exciting LMO add-on: CWAVI, cf. recent ISSI Berne WS...

- **GNSS RO** (Global Navigation Satellite System radio occultation), or, more specifically so far, GPS RO (U.S. Global Positioning System radio occultation), for deriving tropospheric **pressure, temperature, and humidity** profile information, via atmospheric refractivity. => *it’s extremely simple, elegant & reliable in delivering its mission* (despite any confusion I may create; since it uses refractometric vertical atmospheric profiling set as a well-posed boundary value problem with direct signal reception – rather than using radiometric sounding set as an ill-posed inversion problem, or backscattered signal reception set as a high-power radar/lidar problem. Comment: I truly *like* radiometers, radars, and lidars for what they can deliver!)

- **LEO-LEO MO** (Low Earth Orbit X/K band microwave occultation), for deriving tropospheric **pressure, temperature, humidity, and liquid water** profile information, via refractivity and differential absorption, complemented by simple **Clouds & Water Vapor Imager (CWAVI)**. => *more to do but still simple, elegant & reliable in delivering its job* (as it uses refractometric&diff.absorption profiling, plus just photos:)

- *more info on this recent ISSI Berne workshop: >www.issibern.ch/workshops/shallowclouds/*
Comprehensive review of LEO-LEO microwave and IR-laser occultation

Liu, C.L., G. Kirchengast, S. Syndergaard, E.R. Kursinski, Y.Q. Sun, W.H. Bai, Q.F. Du

A review of low Earth orbit occultation using microwave and infrared-laser signals for monitoring the atmosphere and climate

And–where’s further LLO info? Well, read this recent review...

<table>
<thead>
<tr>
<th>Requirement</th>
<th>LMO</th>
<th></th>
<th>Sp. Humidity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Target</td>
<td>Thres</td>
<td>Target</td>
<td>Thres</td>
</tr>
<tr>
<td>Horizontal domain</td>
<td>global</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal sampling</td>
<td>500</td>
<td>1000</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>(mean distance of adjacent profiles) to be achieved within:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time sampling</td>
<td>12</td>
<td>24</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>No. of profiles per grid box per month</td>
<td>40</td>
<td>30</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Vertical domain</td>
<td>1-80</td>
<td>3-50</td>
<td>1-50</td>
<td>3-18</td>
</tr>
<tr>
<td>Vertical sampling</td>
<td>LT</td>
<td>UT</td>
<td>LS</td>
<td>US</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>RMS accuracy</td>
<td>LT</td>
<td>UT-bottom</td>
<td>UT≥10km</td>
<td>LS</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>1</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>1</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>Long-term stability</td>
<td>[K/dec]</td>
<td>0.1</td>
<td>0.15</td>
<td>2</td>
</tr>
<tr>
<td>(per decade)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timeliness</td>
<td>Climate NWP</td>
<td>7</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>Time domain</td>
<td>> 3</td>
<td>[years]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
...for LEO-LEO microwave (LMO) in context see also this review...

Review on new key technologies for observing water vapor, including LMO

Emerging technologies and synergies for airborne and space-based measurements of water vapor profiles

TAIKONG in English means SPACE, and it’s a journal host by ISSI Beijing, to publish the outcomes of ISSI Beijing Forums and Workshops. Meanwhile, a concise related paper will be published in the Chinese Journal of Space Science.
So, next is: ISSI-BJ Forum Taikong special issue...

Exploring greenhouse gases, water and climate changes by LEO-LEO occultation

Outline:
Foreword
Maurizio Falanga
Introduction
Give an overview of this ISSI Beijing LEO-LEO forum.
Congliang Liu, Gottfried Kirchengast and ...
Challenging Requirements in forcing and feedback in climate change and water cycle processes
Gottfried Kirchengast, Daren Lv, Congliang Liu and ...
Observation from Space
In this section we may specify the GNSS technique
Gottfried Kirchengast, Yueqiang Sun, Congliang Liu and ...
LLO techniques in terms of principles, algorithms
Gottfried Kirchengast, Stig Syndergaard, Kerri Cahoy, Congliang Liu and ...

CACES mission
Overview of the Chinese mission
Daren Lv, Xin Wang, Congliang Liu and ...
Scientific objectives
Gottfried Kirchengast, Daren Lv, Congliang Liu and ...
Mission Concept
Daren Lv, Xin Wang, Armin Loscher, Congliang Liu and ...
Orbit and Spacecraft
Daren Lv, Xin Wang, Congliang Liu and ...
Highs and Advantages
Daren Lv, Gottfried Kirchengast, Yueqiang Sun and ...
International Collaborations and Further Mission activities
Daren Lv, Gottfried Kirchengast, Yueqiang Sun, Xiaolong Dong and ...
Summary and Outlook
Daren Lv, Gottfried Kirchengast, Congliang Liu and ...

(Maurizio Falanga and Laura Baldi, please revise this section.)

This is the eighth successfully organized forum by the International Space Science Institute in Beijing (ISSI -BJ) in the framework of the Space Science Strategic Pioneer Project of the Chinese Academy of Sciences (CAS). ISSI -BJ forums are informal and free debates, brainstorming meeting, among some twenty to fifty high-level participants on open questions of scientific nature.
Overall LLO prospects: conclusion and next steps

1. LLO to provide benchmark data of thermodynamic variables (LMO), GHGs and aerosol (LIO) in Earth’s free atmosphere

Exploratory scientific studies, technical feasibility work, and ground demos encouraging → unique scientific potential → continue work towards LLO mission (& CWAVI; NIDAR).

2. Go for CACES: realize a first LEO-LEO explorer mission

The JLOAC partners, plus further partners, may implement a pioneering LMIO science&demo mission, or initially a first-time LMO smallsat science&demo mission.

[Note if interested in papers:
most papers are accessible on-line via
>www.wegcenter.at/en/arsclisys-publ; otherwise contact
gottfried.kirchengast@uni-graz.at or the first authors]

Thank you for your attention!...
Finally...Huairou, can you hear me? Yes, here KX11!
(glimpse into KX11-CACES perspectives...an insider view:)

(checking for LMO ground demo on roof of new main building)

(KX02/QUESS mission data downlink ongoing)

(KX11/CACES mission data downlink follows:)

...感谢 for the KX11 mission track! 😊